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1 Introduction and summary

Surface operators are higher-dimensional analogues of the usual Wilson and ’t Hooft loop

operators in gauge theory, that are supported on a codimension two submanifold of space-

time. They are defined by specifying a certain type of singularity in the relevant fields as

one approaches the submanifold. Such operators were first used to probe the dynamics of

gauge theory and black holes in [1]–[3]. Thereafter, they appeared in the mathematical

literature in an application to Donaldson theory [4], and in the relation between instantons,

Seiberg-Witten theory and integrable systems [5, 6].

More recently, in an effort to furnish a gauge-theoretic interpretation of the geometric

Langlands program with ramification, surface operators have also been considered in a

twisted version of N = 4 supersymmetric Yang-Mills theory in four dimensions [7]. They

have also made an appearance in the context of the AdS/CFT correspondence between

N = 4 SYM and type IIB supergravity [8]–[12], whereby the proposed action of the SL(2, Z)

duality group on the parameters of a surface operator found in [7], has been shown to be

consistent in a dual type IIB supergravity description in [12].

To date, there has not been an explicit way to prove that the parameters of a surface

operator in the N = 4 gauge theory ought to transform as proposed in [7]. Moreover,
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most examples involve only trivial embeddings of surface operators in spacetime; not much

is known about the action of the SL(2, Z) duality group on the parameters of surface

operators that are non-trivially embedded. Nevertheless, one can do much better with a

simpler theory that also possesses an SL(2, Z) duality; namely, a pure, non-supersymmetric

abelian gauge theory. In fact, it has been explicitly demonstrated in [7] using a pure U(1)

gauge theory, that for a surface operator with one of its two parameters set to zero, the

remaining parameter does indeed transform as proposed under S-duality. One can therefore

hope that a rigorous understanding of surface operators in this non-supersymmetric, abelian

setting, would help shed some light on the above issues.

A summary of the paper. In this paper, we shall consider arbitrary embeddings of

surface operators in the pure U(1) gauge theory on spin (or non-spin) four-manifolds. We

shall derive explicitly, the transformation of the surface operator parameters - that are a

priori simultaneously non-vanishing - under an SL(2, Z) (or a congruence subgroup Γ0(2))

duality of the gauge theory. We find an agreement with the proposal put forth in [7], except

when a surface operator is non-trivially-embedded, in which case the relevant dualities

hold under certain conditions only. By considering a simple correlation function between

a Wilson or ’t Hooft loop operator and a surface operator, we find that the transformation

of parameters is consistent with a switch from Wilson to ’t Hooft loop operators under S-

duality. Via the formalism of duality walls, we shall also provide an alternative derivation of

the transformation of parameters. Last but not least, we analyse the partition function and

the correlation functions of non-singular, gauge-invariant local operators in the presence

of an arbitrarily-embedded surface operator in the background. We find that the partition

function and the correlation functions all behave like modular forms of SL(2, Z) (or Γ0(2)),

albeit with different modular weights.

2 Surface operators in pure U(1) gauge theory

2.1 Description of the relevant surface operators

The Parameters α and η. In this paper, we shall consider surface operators that are

supported on an arbitrary two-submanifold D in pure U(1) gauge theory on a general four-

manifold M , where D and M are assumed to be oriented. The surface operator is to be

characterised by a gauge field solution that gives rise to a singular field strength as one

approaches D. In addition, the gauge field solution must be invariant under rotations of

the plane D′ normal to D.

An example of such a gauge field solution is

A = αdθ, (2.1)

where α is a parameter valued in U(1),1 and θ is the angular component of the coordinate

z = reiθ on D′. Noting that d(dθ) = 2πδD (where δD is a two-form delta function supported

1Such a parameter of the gauge field ought to be valued in the (real) Lie algebra u(1). However, as

explained in [7], one can shift the parameter α → α + u in a particular gauge transformation, whereby

exp(2πu) = 1. The only invariant of such a gauge transformation is the monodromy exp(−2πα) of the

gauge field A around a circle of constant r. Hence, α must take values in U(1) instead.
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at the origin of z, that is also Poincaré dual to D), we find the corresponding field strength

to be

F = 2παδD . (2.2)

As required, F is singular as one approaches D.

However, note from footnote 1 that we are free to shift α by u via a gauge transforma-

tion. As such, this definition of F appears to be unnatural. This can be remedied by lifting

α in (2.2) from U(1) to u(1), such that it is no longer true that α ∼ α+u, that is, F , when

restricted to D, is u(1)-valued. Equivalently, this corresponds to finding an extension of

the U(1)-bundle E on M with connection A, over D (whereby due to the singularity along

D, E is originally defined on the complement of D in M only). Such an extension exists

whenever E is a U(1)-bundle on M . Thus, the definition of F in (2.2) actually makes sense.

Notice that since we have an extension of the bundle E over D, we roughly have an

abelian gauge theory in two dimensions on D. As such, one can introduce a two-dimensional

theta-like angle η as an additional quantum parameter, which enters in the path integral

via the phase

exp

(
−iη

∫

D
F

)
. (2.3)

Notice that η must therefore take values in R/Z, since the integrated first Chern class∫
D F/2π of the U(1)-bundle E → D, is an integer. Just like α, one can shift η (by an

integral lattice) whilst leaving the theory invariant.

A point on non-trivially-embedded surface operators. More can also be said about

the parameter α as follows. In the case when the surface operator is trivially-embedded

in M , that is, M = D′ × D and the normal bundle to D is hence trivial, the self intersec-

tion number

D ∩ D =

∫

M
δD ∧ δD (2.4)

vanishes. On the other hand, for a non-trivially-embedded surface operator supported

on D ⊂ M , the normal bundle is non-trivial, and the intersection number is non-zero.

The surface operator is then defined by the gauge field with singularity in (2.1) in each

normal plane.

When the intersection number is non-zero, or rather for non-trivially embedded surface

operators, there is a restriction on the values that α can take. To explain this, first note that

since F = 2παδD near D, we find, using (2.4), that
∫
D F/2π =

∫
M δD ∧ F/2π = α D ∩ D.

Since the integrated first Chern class
∫
D F/2π is always an integer, we must have

α D ∩ D ∈ Z. (2.5)

In particular, the only gauge transformations that can be defined globally along D, are

those that shift α in such a way as to maintain the condition (2.5). This point will be

important later.
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2.2 Action of duality on trivially-embedded surface operators

Action of S-duality. We shall now discuss the case of a trivially-embedded surface

operator - with simultaneously non-vanishing parameters (α, η) - in the pure U(1) gauge

theory on any closed four-manifold M . Our first objective is to prove explicitly that the

parameters transform as

(α, η) → (η,−α) (2.6)

under the S-duality transformation S : τ → −1/τ of the gauge theory. Here, τ = θ/2π +

4πi/g2 is the complexified gauge coupling parameter. To this end, we shall adopt the

approach taken in [13].

Before we proceed further, we would like to mention again that for a particular surface

operator with parameters (α, η) = (0, η), the above claim has already been explicitly proven

in §2.4 of [7]. However, it is felt that the proof in [7] could have been made more concrete

via a less ad-hoc conclusion. We hope to remedy this with our proof involving a general

surface operator with non-vanishing η and α.

Getting back to our discussion, note that in the pure U(1) gauge theory, we have a

gauge field A (which is locally a real one-form, since u(1) is real) that we can think of as

a connection on a principle U(1)-bundle L on M , with curvature F = dA. We shall take

the action to be (in Euclidean signature)

I =
1

8π

∫

M
d4x

√
h

(
4π

g2
FmnFmn − iθ

2π

1

2
ǫmnpqF

mnF pq

)

=
1

g2

∫

M
F ∧ ⋆F − iθ

8π2

∫

M
F ∧ F, (2.7)

where h is the metric on M , ǫmnpq is the Levi-Civita antisymmetric tensor, and the Hodge-

star operator acts on any two-form in M as ⋆(dxm ∧ dxn) = 1
2ǫmnpqdxp ∧ dxq. Noting that

F± = 1
2(F ± ⋆F ) are the self-dual and anti-self-dual projections of F , we can alternatively

write the action as

Iτ = − i

8π

∫

M
d4x

√
h
(
τF+

mnF+mn − τ̄F−
mnF−mn

)

= − iτ

4π

∫

M
F+ ∧ ⋆F+ +

iτ̄

4π

∫

M
F− ∧ ⋆F−. (2.8)

Note that on any closed four-manifold M , c1(L)2 =
∫
M (F/2π) ∧ (F/2π) is always

an integer, where c1(L) is the first Chern class of L. Since the action I appears in the

quantum theory through the factor exp(−I) in the path integral (that is, the quantum

theory is unaffected when I is shifted by 2πiZ), the quantum theory is invariant under

θ → θ + 4π or τ → τ + 2. However, if M is a closed spin manifold, c1(L)2 is always an

even integer. Then, the quantum theory will be invariant under θ → θ + 2π or τ → τ + 1.

Together with the invariance of I under the S-duality transformation τ → − 1
τ (see [13]

for an explicit proof of this statement), we find that one can at least have full modular

invariance (that is, invariance under the full SL(2, Z) group generated by S : τ → − 1
τ and

T : τ → τ + 1) only when M is spin. On the other hand, if M is non-spin, the theory

– 4 –
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would be invariant under the transformations S and ST 2S which generate the congruence

subgroup Γ0(2) of SL(2, Z).

When one introduces a surface operator into the theory, certain modifications need

to be made to the above description. Firstly, recall that the presence of a surface opera-

tor results in a singularity of the field strength F along its support D (see (2.2)). Since

the action Iτ is quadratic in F+ and F− with a positive-definite real part, it is potentially

divergent. Therefore, in computing the path integral, where one must sum over all inequiv-

alent principle U(1)-bundles on M , the corresponding connections that will contribute to

the computation must then have non-singular curvatures F ′ = F − 2παδD . As such, one

might just as well replace F by F ′ in the above equations, and study instead the action

I′τ (A) = − iτ

4π

∫

M
F ′+ ∧ ⋆F ′+ +

iτ̄

4π

∫

M
F ′− ∧ ⋆F ′−

= − iτ

4π

∫

M
(F+ − 2παδ+

D) ∧ ⋆(F+ − 2παδ+
D)

+
iτ̄

4π

∫

M
(F− − 2παδ−D) ∧ ⋆(F− − 2παδ−D). (2.9)

As mentioned earlier, one must also include in the action, the theta-like term

Iη(A) = iη

∫

D
F ′. (2.10)

Notice that we have again replaced F with F ′ in the above term. This is because the

singularity in F will result in a highly oscillatory contribution to the path integral that is

tantamount to taking its classical limit - an approximation that we do not wish to consider.

We shall now introduce a two-form g that is invariant under the usual Maxwell abelian

gauge symmetry A → A − dǫ (where ǫ is a zero-form). We would then like to define the

following extended gauge symmetry

A → A + b

g → g + db, (2.11)

where b is a connection one-form on a principle U(1)-bundle T with curvature db. If T has

trivial curvature with b = −dǫ, one gets back the usual Maxwell abelian gauge symmetry.

Since A is a connection on the bundle L, it will mean that A + b is a connection on the

bundle L ⊗ T . For trivial (or flat) T , where one just has an ordinary Maxwell theory,

it is clear that it suffices to consider only some L in order to define the theory properly.

However, in order to generalise the theory to non-trivial T - that is, for (A+b) and (g+db)

to be physically valid as a gauge field and two-form, respectively - one must necessarily

sum over all L’s.

A relevant consequence of an invariance of any theory under (2.11), is that one is free

to shift the periods of g - that is, the integrals of g over closed two-dimensional cycles

S ⊂ M - by integer multiples of 2π:
∫

S
g →

∫

S
g + 2πn, ∀n ∈ Z. (2.12)

– 5 –
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(Here, we have made use of the fact that since db is a curvature of a line bundle T , we

have
∫
S db = 2π

∫
S c1(T ) ∈ 2πZ).

One way to modify the total action I′τ + Iη so that we can have invariance under the

transformations (2.11), is to replace F ′ with F ′ = F ′−g. However, notice that the resulting

theory is trivial and not equivalent to the original theory, because one cannot set g to zero

even if we let b = −dǫ. Nevertheless, one can introduce another abelian gauge field w, that

is a connection one-form on a principle U(1)-bundle L̃ with curvature W = dw, and add

to the action the term

Ĩ =
i

8π

∫

M
d4x

√
hǫmnpqWmngpq =

i

2π

∫

M
W ∧ g. (2.13)

Like any curvature of a line bundle, we have the condition
∫
S W/2π ∈ Z. Thus, we find

that Ĩ is invariant mod 2πiZ under the extended gauge transformation (2.11). It is also

invariant under the gauge transformation w → w − dǫ̃, where ǫ̃ is a zero-form on M .

Let us now define an extended theory in the fields (A,g,w) with action

Î(A,g,w) =
i

2π

∫

M
W ∧ g − iτ

4π

∫

M
F ′+ ∧ ⋆F ′+ +

iτ̄

4π

∫

M
F ′− ∧ ⋆F ′− + iη

∫

D
F ′. (2.14)

Since under (2.11), F ′ is manifestly invariant while Ĩ is invariant mod 2πiZ, we find that

Î(A,g,w) will be invariant mod 2πiZ under (2.11), as required. It is also invariant under

gauge transformations of w.

We would now like to show that the extended theory with action Î(A,g,w) is equivalent

to the original theory with action I′τ + Iη that we started with. To this end, first note that

the (unregularised) partition function of the extended theory can be written as

1

vol(G)

1

vol(Ĝ)

1

vol(G̃)

∑

L, eL

∫
DA Dg Dw exp

(
−Î(A,g,w)

)
, (2.15)

where G and G̃ denote the group of gauge transformations associated to A and w, and Ĝ
denotes the group of extended gauge transformations associated to g. Next, let us try to

compute the path integral over the w fields. To do this, first write w = w0 + w′, where

w0 is a fixed connection on the line bundle L̃. Then, the path integral over the w fields

can be written as

1

vol(G̃)

∑

eL

∫
Dw′ exp

(
− i

2π

∫

M
w′ ∧ dg

)
· exp

(
− i

2π

∫

M
W0 ∧ g

)
, (2.16)

where W0 = dw0 corresponds to the curvature of the fixed connection w0. It is a closed

two-form on M in the cohomology H2(M), as w0 is only defined locally as a one-form.

Noting that
1

vol(G̃)

∫
Dw′ exp

(
− i

2π

∫

M
w′ ∧ dg

)
= δ(dg), (2.17)

one can compute (2.16) as

∑

W0∈H2(M)

exp

(
−i

∫

M
W0 ∧

g

2π

)
· δ(dg) = δ

([
g

2π

]
∈ Z

)
· δ(dg). (2.18)

– 6 –
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In other words, we have the condition dg = 0. We also have the condition that
[

g
2π

]
belongs

to an integral class, that is, the periods
∫
S g must take values in 2πZ. The first condition

says that one can pick g to be a constant two-form. Together with the second condition

and (2.12), one can indeed obtain g = 0 via the extended gauge transformation (2.11). By

setting g = 0, the action Î reduces to the original action I′τ + Iη. Hence, the theory with

action Î(A,g,w) is indeed equivalent to the original theory that we started with.

Now, let us analyse Î(A,g,w) in a different gauge, namely, one in which we set A = 0

via the extended gauge symmetry (2.11).2 Noting that
∫

M
W ∧ g =

∫

M

(
W+ ∧ ⋆g+ −W− ∧ ⋆g−

)
=

∫

M
(W+ · g+) − (W− · g−), (2.19)

one can write the action in this gauge as

Î(g,w) =
i

2π

∫

M
(W+ − 2πηδ+

D) · g+ − (W− − 2πηδ−D) · g− − iτ

4π

∫

M
|2παδ+

D + g+|2

+
iτ̄

4π

∫

M
|2παδ−D + g−|2, (2.20)

where |k|2 = k ∧ ⋆k for any two-form k. Note that in the above, we have also used the fact

that the term −2πiηα
∫
M δD ∧ δD - which generically appears in the action - can be set to

zero for a trivially-embedded surface operator. If we define

g′ = g + 2παδD − 1

τ

(
W+ − 2πηδ+

D

)
− 1

τ̄

(
W− − 2πηδ−D

)
, (2.21)

we can rewrite the action as

Î(g′,w) = − iτ

4π

∫

M
|g′+|2 +

iτ̄

4π

∫

M
|g′−|2 +

i

4πτ

∫

M
|W+ − 2πηδ+

D|2 − i

4πτ̄

∫

M
|W−

−2πηδ−D|2 − iα

∫

D
(W − 2πηδD). (2.22)

Then, by integrating out the g
′+ and g

′− fields classically using the Euler-Lagrange equa-

tions, we have

Î(w) =
i

4πτ

∫

M

(
W+ − 2πηδ+

D

)
∧ ⋆
(
W+ − 2πηδ+

D

)

− i

4πτ̄

∫

M

(
W− − 2πηδ−D

)
∧ ⋆
(
W− − 2πηδ−D

)
− iα

∫

D
(W − 2πηδD). (2.23)

Finally, by comparing the action Î(w) with its equivalent action

(I′τ + Iη)(A) = − iτ

4π

∫

M
(F+ − 2παδ+

D) ∧ ⋆(F+ − 2παδ+
D) (2.24)

+
iτ̄

4π

∫

M
(F− − 2παδ−D) ∧ ⋆(F− − 2παδ−D) + iη

∫

D
(F − 2παδD),

2Note that one can only set A = 0 (that is, to pure gauge) over all of M via the usual gauge transformation

A → A−dǫ, for M a simply-connected four-manifold. Nevertheless, one can always use the extended gauge

transformation of (2.11) to set A = 0 for any M .

– 7 –
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we see that the original theory in the gauge field A with complexified coupling parameter

τ and surface operator parameters (α, η), is dual to a theory in the gauge field w with

complexified coupling parameter −1/τ and surface operator parameters (η,−α). In other

words, we have explicitly shown that the pure U(1) gauge theory with a trivially-embedded

surface operator continues to enjoy S-duality, whereby the surface operator parameters

transform as

(α, η) → (η,−α) (2.25)

under the S-duality transformation S : τ → −1/τ .

Action under a shift in theta-angle. Our second objective is to prove that the pa-

rameters (α, η) transform under the symmetry T : τ → τ + 1 as

η → η − α

α → α, (2.26)

for M a closed spin manifold.

Note at this point that a proof of the above claim can also be found in §2.5 of [7]. How-

ever, there are some minor but non-trivial differences in our approaches, which nevertheless

lead to the same conclusion.

Coming back to our discussion, note that the theta-angle term from our effective action

I′τ in (2.9) is given by

I′θ = − iθ

8π2

∫

M
F ′ ∧ F ′, (2.27)

where F ′ = F − 2παδD . This can also be written as

I′θ = −iθN, (2.28)

where

N =
1

2
c1(L)2 − αm, (2.29)

and m =
∫
D(F/2π) is the “magnetic charge” associated with the flux through D. A term

(α2/2)D∩D that generically appears in N has been set to zero above, as we are considering

surface operators which are trivially-embedded only. Also, the first term (1/2)c1(L)2 is

always an integer, since M is defined to be spin.

Next, consider the term

Iη = iη

∫

D
F ′ = iη

∫

M
δD ∧ F ′, (2.30)

which is the only term in the total action that can potentially cancel the variation of I′θ
under the transformation T : θ → θ + 2π. It can also be written as

Iη = 2πiηm, (2.31)

where a term −2πiαηD ∩D has been set to zero in Iη above, since we are considering only

trivially-embedded surface operators.

– 8 –
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Thus, the sum of the two contributions to the total action is then

I′θ + Iη = −iθN + 2πiηm. (2.32)

The variation in I′θ under T : θ → θ + 2π is (mod 2πiZ)

∆I′θ = 2πiαm. (2.33)

Hence, in order for the total contribution I′θ + Iη to be invariant, one must have the

transformation

η → η − α

α → α (2.34)

under T : τ → τ + 1, as claimed.

If M is not a spin manifold, the original theory without surface operators is only

invariant under T 2 : τ → τ + 2. This is because c1(L)2 is no longer an even integer.

Repeating the above analysis, we find that the parameters must transform as

η → η − 2α

α → α (2.35)

under T 2 : τ → τ + 2, when M is not spin.

Action under overall duality. Note that the SL(2, Z) duality group is an infinite dis-

crete group which acts on τ as

τ → (aτ + b)

(cτ + d)
,

(
a b

c d

)
∈ SL(2, Z). (2.36)

It is generated by the transformations S : τ → −1/τ and T : τ → τ + 1, where

S =

(
0 1

−1 0

)
, T =

(
1 1

0 1

)
. (2.37)

From (2.25) and (2.34), we find that α and η transform as

(α, η) → (α, η)M−1, (2.38)

where M is S or T , accordingly. Therefore, this is true for any M ∈ SL(2, Z). Hence,

we see that (α, η) transform naturally under the SL(2, Z) duality of the pure U(1) gauge

theory on a (closed) spin manifold M . In particular, (α, η) transform under S-duality just

like magnetic and electric charge, respectively.

On the other hand, consider the congruence subgroup Γ0(2) that is generated by the

transformations S and ST 2S, that is,

S =

(
0 1

−1 0

)
, ST 2S =

(
−1 0

2 −1

)
. (2.39)
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From (2.25) and (2.35), we find that α and η transform as

(α, η) → (α, η)M′−1, (2.40)

where M′ is S or ST 2S, accordingly. Therefore, this is true for any M′ ∈ Γ0(2). Hence, we

see that (α, η) transform naturally under a Γ0(2) duality of the pure U(1) gauge theory on

a (closed) non-spin manifold M . Nonetheless, (α, η) continue to transform under S-duality

just like magnetic and electric charge, respectively.

2.3 Action of duality on non-trivially-embedded surface operators

Action Under S-duality. The analysis for a non-trivially-embedded surface operator

is similar to the one before for a trivially-embedded surface operator, except for one minor

difference. Recall that for a non-trivially-embedded surface operator, we have an additional

term of −2πiηα
∫
M δD ∧ δD in the extended action Î(g,w) of (2.20). Consequently, one

also ends up with this additional term in the final expression for the extended action, that

is, the final extended action is in this case

Î(w)′ = Î(w) − 2πiηα

∫

M
δD ∧ δD, (2.41)

where Î(w) is given in (2.23).

From (2.5), we learn that α
∫
M δD ∧ δD = αD ∩ D must be an integer. Therefore, for

Î(w)′ above to be equivalent to Î(w) mod 2πiZ, the parameter η must also be integer-

valued. That is,

Î(w)′ = Î(w) mod 2πiZ, ∀ η ∈ Z. (2.42)

Thus, starting with the original theory with action I′τ + Iη(A), one can only arrive

at a dual theory in terms of the gauge field w, which has inverted complexified coupling

parameter −1/τ and surface operator parameters (η,−α), if and only if η is integer-valued.

In other words, S-duality will only be preserved if η is integer-valued.

Action under a shift in theta-angle. Recall also that for a non-trivially-embedded sur-

face operator, one must add the terms (α2/2)D∩D and −2πiαηD∩D to (2.29) and (2.31),

respectively. Hence, we have in this case

I′θ + Iη = −iθ
(
N + (α2/2)D ∩ D

)
+ 2πiη (m − αD ∩ D) , (2.43)

where N is given in (2.29).

For M spin, the variation in I′θ under T : θ → θ + 2π is now (mod 2πiZ)

∆I′θ = 2πiαm − απiZ, (2.44)

where we have made use of the fact that αD ∩ D ∈ Z.

Suppose we have the transformation

η → η − α

α → α (2.45)
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under T : τ → τ + 1. Then, the corresponding variation in Iη will be given by

∆Iη = −2πiαm + 2απiZ. (2.46)

In order for the theory to be invariant under T : τ → τ +1 when the parameters of the

surface operator transform as in (2.45), we must have ∆I′θ + ∆Iη = απiZ = 0 mod 2πiZ.

In other words, α can only be even-integer-valued, for M spin.

For M non-spin, the variation in I′θ under T 2 : θ → θ + 4π is now (mod 2πiZ)

∆I′θ = 4πiαm − 2απiZ. (2.47)

Suppose we have the transformation

η → η − 2α

α → α (2.48)

under T 2 : τ → τ + 2. Then, the corresponding variation in Iη will be given by

∆Iη = −4πiαm + 4απiZ. (2.49)

In order for the theory to be invariant under T 2 : τ → τ +2 when the parameters of the

surface operator transform as in (2.48), we must have ∆I′θ + ∆Iη = 2απiZ = 0 mod 2πiZ.

In other words, α can only be integer-valued, for M non-spin.

Action under overall duality. Let us now summarise the action of the transformations

S, T and ST 2S on the parameters (α, η). For

S =

(
0 1

−1 0

)
, T =

(
1 1

0 1

)
ST 2S =

(
−1 0

2 −1

)
, (2.50)

We find that α and η transform as

(α, η) → (α, η)M−1, (2.51)

where M is S or T for M spin, or is S or ST 2S for M non-spin. However, in contrast to

the previous case of a trivially-embedded surface operator, η and α have to be restricted

to integer and even-integer values, respectively, for M spin, and only integer values for M

non-spin, as explained above.

Recall at this point from §2.1, that η, by definition, must take values in R/Z. Hence,

taking η to be integer-valued is equivalent to setting η to zero. In other words, S-duality

will only be preserved in the free, U(1) gauge theory for a class of non-trivially-embedded

surface operators which effectively have parameters (α, η) = (α, 0). Alternatively, notice

that since the term −2πiηZ that results in the non-invariance is a c-number independent of

the quantum fields, one could instead allow η to be non-vanishing and arbitrarily-valued,

and claim that S-duality holds up to a c-number.

On the other hand, recall that α takes values in U(1) ∼= R/2πZ. This means that

α only effectively vanishes if it is an integer multiple of 2π, not when it is any integer.

– 11 –



J
H
E
P
0
5
(
2
0
0
9
)
1
0
4

However, since one is free to subject α to a lattice shift by 2πZ (because α ∼ α + 2πZ),

it will mean that the condition ∆I′θ + ∆Iη = απiZ = 0 mod 2πiZ, or the condition

∆I′θ + ∆Iη = 2απiZ = 0 mod 2πiZ - which ensures invariance of the theory under T :

τ → τ + 1 or T 2 : τ → τ + 2, respectively - cannot really be satisfied for any non-zero

value of α. At any rate, the term απiZ or 2απiZ, which results in the non-invariance, is a

c-number independent of the quantum fields. Therefore, one could instead allow α to be

non-vanishing and arbitrarily-valued, and claim that the symmetry T : τ → τ + 1 holds up

to a c-number.

Hence, we can conclude that for any non-trivially-embedded surface operator, the

parameters (α, η) will transform naturally under SL(2, Z) (or Γ0(2) when M is non-spin)

as shown in (2.51). However, S-duality will only hold if η is effectively zero, while the

overall SL(2, Z) (or Γ0(2)) duality holds up to a c-number at most, regardless.

The theory over parameter space. Last but not least, take notice of the term

−2πiηαD ∩ D which appears in the action Î(w)′ of (2.41). Now, recall that any lattice

shift of α (induced by a gauge transformation) must respect the condition αD ∩ D ∈ Z,

and that any lattice shift in η is a shift by an integer. Altogether, this means that Î(w)′

is invariant mod 2πiZ under lattice shifts of α and η. Hence, at every inequivalent point

in the (α, η)-parameter space, we have a single-valued partition function. In other words,

the partition function - even when D ∩ D 6= 0 - is a complex-valued function of α and η.

Note that our above statement differs from the conclusion in §2.5 of [7], which asserts

that the partition function is a section of a non-trivial complex line bundle over the (α, η)-

parameter space. This discrepancy can be understood as follows. In [7], an arbitrary

c-number term −πiαηD∩D has been added by hand to the action, so that T would persist

as a symmetry of the theory under (2.45) (or (2.48)) for any value of α, not just for even

integer (or integer) values, as we have found earlier. Without this additional term, the

partition function in [7] would be a complex-valued function of α and η. But the anomaly

in the symmetry T : τ → τ + 1 would now, in their discussion, be given by −πiαZ; that is,

(ignoring possible lattice shifts in α by 2πZ), the authors of [7] would have to insist that α

take on even integer values if T : τ → τ + 1 were to remain a symmetry under (2.45); this

is simply our result above.

One can also interpret the above facts as follows. Firstly, adding the c-number term

−πiαηD ∩D in [7] actually makes the theory anomalous, because the partition function is

now no longer a function over parameter space, but a section of a non-trivial line bundle

over it. However, at the expense of inheriting this anomaly, one would have an apparent

symmetry T : τ → τ + 1 (or T 2 : τ → τ + 2) under (2.45) (or (2.48)), for any value of

α. Nevertheless, if one restricts to a subspace of the (α, η)-parameter space where α takes

on even integer (or integer) values, the line bundle over it can be made trivial, and the

theory will be genuinely anomaly-free (if one again ignores possible lattice shifts in α by

2πZ). This just re-expresses the claim in [7] that it would be possible to omit the c-number

term, and have the symmetry T : τ → τ + 1 hold up to a c-number (which we know can

be canceled mod 2πiZ if one chooses even integer values of α).
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2.4 Correlation functions with Wilson and ’t Hooft loop operators

We shall now consider a simple example of a correlation function between a Wilson loop

operator and a surface operator. Let the surface operator OD be supported on D = S2

in M = R
4. Let D be linked by a circle C of unit radius in a plane normal to D. Then,

the semi-classical approximation of a correlator of OD with a Wilson loop operator WC =

exp(−
∮
C
A), amounts to evaluating the Wilson loop operator on the gauge field produced

by the surface operator in (2.1). As such, we have

〈OD · WC〉
〈OD〉 = exp(−2πα). (2.52)

Next, let us consider the correlation function between an ’t Hooft loop operator and

the above surface operator. An ’t Hooft loop can be represented by a Dirac monopole, and

in the limit that the loop is infinitely large, the field strength around the monopole (in the

classical approximation) is exactly given by

F = − i

2
sinθ dθ dφ, (2.53)

where θ and φ are local coordinates on any unit two-sphere which surrounds the loop. Now,

let the surface operator OD wrap the loop, that is, let D be the unit two-sphere surrounding

the loop. Then, the surface operator would couple to the magnetic field produced by the ’t

Hooft operator through the parameter η in (2.3). As such, the correlator would be given by

exp

(
−iη

∫

S2

(
− i

2
sinθ dθ dφ

))
= exp(−2πη). (2.54)

Under S-duality, the Wilson loop becomes an ’t Hooft loop, that is, (2.52) will be-

come (2.54). This however, can be effected by α → η also. Consequently, we find that the

parameter transformation α → η under S-duality, is indeed consistent with a switch from

Wilson to ’t Hooft loop operators.

3 Deriving the transformation of parameters via the formalism of duality

walls

3.1 The formalism of duality walls

It was recently shown in [14] that for any element g of the SL(2, Z) duality group of the

pure U(1) gauge theory on a four-manifold, one can define a codimension one defect that

separates the four-manifold into two regions, such that the theories defined in each region

are related by the duality transformation g effected by a wall operator placed along the

defect. As such, this wall operator is also know as a duality wall. Since any element

g can be generated from the transformations S and T , it suffices for us to describe the

corresponding wall operators associated to S and T .

Let us first describe the wall operator associated to the S-transformation τ → −1/τ .

Suppose the codimension one defect W splits M into two regions M− and M+. We will

choose the orientation of W such that it agrees with the one induced from M− and disagrees
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with the one induced from M+. Let A and Â be the gauge field and its S-dual living in

M− and M+, respectively. Then, the wall operator associated to the S-transformation can

be defined by inserting into the path integral the factor [14]

exp

(
− i

2π

∫

W
A ∧ dÂ

)
. (3.1)

In other words, one must add to the action, the term i
2π

∫
W A ∧ dÂ. Thus, the effective

action of the theory in region M− is given by

IM−
=

1

g2

∫

M
F ∧ ⋆F − iθ

8π2

∫

M
F ∧ F +

i

2π

∫

W
A ∧ dÂ, (3.2)

while the effective action of the S-dual theory in region M+ is given by

IM+
=

1

ĝ2

∫

M
F̂ ∧ ⋆F̂ − iθ̂

8π2

∫

M
F̂ ∧ F̂ − i

2π

∫

W
A ∧ dÂ, (3.3)

where F̂ = dÂ and τ̂ = θ̂/2π +4πi/ĝ2 are the S-dual field strength and complexified gauge

coupling, respectively. The minus sign in the last term of IM+
arises because the wall W

and M+ are defined to have opposite orientations.

One can see that (3.1) indeed corresponds to an S-duality wall operator as follows. By

varying the actions IM−
and IM+

, and requiring that the resulting boundary terms vanish

as well, we find the following respective conditions on the fields:

F̂ |W =
4πi

g2
⋆ F |W − θ

2π
F |W

F |W = −4πi

ĝ2
⋆ F̂ |W +

θ̂

2π
F̂ |W . (3.4)

Noting that the expression for the stress-energy tensor is given by

Tµν =
2

g2

(
FµαFα

ν +
1

4
gµνFαβFαβ

)
, (3.5)

and substituting F and F̂ from (3.4) into the stress-energy tensors T and T̂ of the theories

in M− and M+, one finds that T = T̂ if and only if

τ̂ = −1/τ . (3.6)

In other words, we find that the theories in M− and M+ are equivalent and S-dual to each

other, as anticipated.

Similarly, the wall operator associated to the T -transformation τ → τ + 1, can be

defined by inserting into the path integral the factor

exp

(
− i

4π

∫

W
A ∧ dA

)
. (3.7)

Notice that the term i
4π

∫
W A∧dA which one must now add to the action is manifestly topo-

logical and independent of the metric. Hence, it does not contribute to the stress-energy
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tensor Tµν = δS/δgµν . Consequently, the stress-energy tensor does not get modified in the

presence of the operator (3.7), and in particular, the stress-energy tensors of the theories

in M− and M+ agree across W . That is, (3.7) indeed represents a duality wall operator.

The duality wall operators of (3.1) and (3.7) have recently been utilised in [15] to

derive - among other things - the transformation properties of non-local operators such as

the Wilson-’t Hooft loop operator and Chern-Simons operator, under the SL(2, Z) duality

of the pure U(1) gauge theory. However, the analysis for surface operators is lacking in [15],

and we shall now attempt to bridge this gap.

3.2 Transformation of parameters under T : τ → τ + 1

Let us now derive the transformation of the surface operator parameters (α, η) under

T : τ → τ + 1, via the formalism of duality walls.

In what follows, we shall, for simplicity, assume that the surface operator is trivially-

embedded, that is, we shall take M = D×C to be the spin four-manifold, where the surface

operator is supported along D, at the origin of C. Also, as mentioned earlier, z = reiθ

shall be the coordinate on C, such that D lies along z = 0. Let us then define W to be

the three-dimensional boundary ∂Zǫ
D = D × C of a tubular neighbourhood Zǫ

D = D × B2
ǫ

of the surface operator supported along D, with “thickness” ǫ, where B2
ǫ is a disc of unit

radius ǫ centred at the origin of C, with boundary ∂B2
ǫ the circle C.

By inserting the operator (3.7) into the path integral, we are effectively placing a

duality wall along W , which will divide M into the regions M− and M+, that lie exteriorly

and interiorly of Zǫ
D, respectively. Because the region M+ (with opposite orientation from

W ) contains the surface operator supported along D, the additional term − i
4π

∫
∂Zǫ

D
A∧dA

which now appears in the action of the theory in M+, must be evaluated on the gauge field

produced by the surface operator itself. In particular, recall that for the circle C linking

D, we have
∮
C
A = 2πα, since A = αdθ in C. Thus, the additional term that appears in

the action of the dual theory in M+, will be given by3

− iα

∫

D
F. (3.8)

Since the definition (2.3) of a surface operator requires one to include in the original action

the term iη
∫
D F , and since the insertion of the operator (3.7) in the path integral does not

modify the gauge field A, we find that together with (3.8), we will have (α, η) → (α, η−α)

under T : τ → τ + 1, as proven earlier.

3.3 Transformation of parameters under S : τ → −1/τ

We shall now derive the transformation of the surface operator parameters (α, η) under

S : τ → −1/τ , via the formalism of duality walls. Again, we shall assume that the surface

operator is trivially-embedded.

3We have taken advantage of the fact that the additional term − i
4π

R
∂Zǫ

D

A∧dA is manifestly topological

and independent of the metric on ∂Zǫ
D, and rescaled the radius ǫ appropriately.
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As a start, recall that the definition of a surface operator requires one to insert into

the path integral the factor

exp

(
−iη

∫

D
F

)
. (3.9)

Notice that we can also write this as

exp

(
i

2π

∫

∂Zǫ
D

F ∧ Ωη

)
(3.10)

for a one-form Ωη on M that obeys
∮
C

Ωη = −2πη, where η ∈ R/Z.

Does the one-form Ωη exist, one may ask. To answer this question, first notice that

our above definition asserting that D includes only the centre z = 0 of B2
ǫ , implies that

C (that is, ∂B2
ǫ ) and D have linking number one. Consequently, this means that D must

be homologically trivial, that is, D must be a boundary of a three-chain D3, such that

the algebraic intersection number of D3 and C is one [16]. That D must be homologically

trivial is in fact consistent with a required property of the term iη
∫
D F which defines the

surface operator:
∫
D F/2π is the integrated first Chern class of the U(1)-bundle over D.

As such, the term iη
∫
D F ought to be invariant under the shift F → F + df , where f is

some globally-defined one-form on D. This is only possible if D is homologically trivial

with no boundary. That the intersection number of D3 and C is one, simply means that we

have
∫
M ΩD3 ∧ ΩC =

∮
C
ΩD3 = 1, where the one-form ΩD3 and the three-form ΩC are the

Poincaré-dual classes of D3 and C in M , respectively. Hence, the one-form Ωη does indeed

exist, and is given by Ωη = −2πη · ΩD3.

Let us now place the duality wall (3.1) along W = ∂Zǫ
D. Together with the fac-

tor (3.10), and noting that ∂W = 0, we find that this is equivalent to inserting in the path

integral the wall operator

exp

(
− i

2π

∫

∂Zǫ
D

A ∧ dB̂

)
, (3.11)

where B̂ = Â − Ωη.
4 Notice that this is just an S-duality wall operator. This means

that the S-dual theory in M+ within ∂Zǫ
D containing the surface operator, has dual gauge

field B̂ and complexified gauge coupling τ̂ = −1/τ . Its action will also contain the extra

boundary term − i
2π

∫
∂Zǫ

D
A ∧ dB̂ from the insertion (3.11).

Note at this point that the condition
∮
C

Ωη = −2πη implies that Ωη = ηdθ (where we

have made use of the fact that C ⊂ ∂Zǫ
D, and the fact that the orientation of the region

M+ - where the field B̂ and therefore the one-form Ωη is defined in - is opposite to that

of ∂Zǫ
D). Evaluating (3.11) on the gauge field A = αdθ produced by the surface operator,

and noting that dΩη = 2πηδD, we finally find the effective action of the S-dual theory in

M+ to be given by

IM+
(B̂) =

1

ĝ2

∫

M
(F̂ − 2πηδD) ∧ ⋆(F̂ − 2πηδD) − iθ̂

8π2

∫

M
(F̂ − 2πηδD) ∧ (F̂ − 2πηδD)

−iα

∫

D
(F̂ − 2πηδD). (3.12)

4We have - in deriving (3.11) - made use of the fact that the requisite conditions in (3.4) admit a solution

whereby F |W=∂Zǫ

D
is trivial in cohomology, such that one can write F = dA globally over ∂Zǫ

D.
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This can be re-written as Î(w) of (2.23), if one replaces w with Â, and τ with −1/τ̂ .

In other words, under the S-duality transformation S : τ → −1/τ , the surface operator

parameters transform as (α, η) → (η,−α), as proven earlier.

As a final comment, notice that the one-form ΩD3 and therefore the one-form Ωη,

appears to be non-unique. This is because the Poincaré-dual three-chain D3 is defined

modulo an addition of a three-cycle. However, this extra degree of freedom will be fixed

once Ωη is required to satisfy a certain condition. Indeed, note that the equation of motion

for the theory at the boundary ∂Zǫ
D is, via (3.11), given by dB̂ = 0. This implies that Ωη

must satisfy the classical condition
∫
D F̂ =

∫
D dΩη, and is therefore unique. In turn, since

dΩη = 2πηδD, and since δD is a delta two-form with support along D only, it must be true

that F̂ = 2πηδD + . . . , where the ellipses refer to terms that are regular near D. In other

words, F̂ has the same form as W in (2.23), such that IM+
(B̂) - like Î(w) — is a non-

divergent action with a non-zero contribution to the path integral, as required physically.

4 Partition function of pure U(1) gauge theory with surface operators

4.1 Modular forms

For a function F that is not necessarily holomorphic, we say that it transforms as a modular

form of weight (u, v) for a finite index subgroup Γ of SL(2, Z) if for
(

a b

c d

)
∈ Γ, (4.1)

one has

F

(
aτ + b

cτ + d

)
= (cτ + d)u(cτ̄ + d)vF (τ). (4.2)

In particular, if we have a function F (τ) which transforms as

F (−1/τ) = τuτ̄vZ(τ) (4.3)

F (τ + 1) = Z(τ), (4.4)

we say that F (τ) transforms as a modular form of SL(2, Z) with weight (u, v).5 Alterna-

tively, if F (τ) transforms as

F (−1/τ) = τuτ̄vZ(τ) (4.5)

F (τ + 2) = Z(τ), (4.6)

we say that F (τ) transforms as a modular form of Γ0(2) with weight (u, v).

We would like to extend the above definitions to functions which depend also on the

parameters α and η. In light of the way (α, η) transform naturally under SL(2, Z) (or

Γ0(2)), we shall say that if F (τ, α, η) transforms as

F (−1/τ, η,−α) = τuτ̄vZ(τ, α, η) (4.7)

F (τ + 1, α, η − α) = Z(τ, α, η), (4.8)

5This statement is to hold up to a τ -independent multiplicative constant.
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then it transforms like a modular form of SL(2, Z) with weight (u, v). Alternatively, if

F (τ, α, η) transforms as

F (−1/τ, η,−α) = τuτ̄vZ(τ, α, η) (4.9)

F (τ + 2, α, η − 2α) = Z(τ, α, η), (4.10)

we say that F (τ) transforms like a modular form of Γ0(2) with weight (u, v).

4.2 Partition function of pure U(1) gauge theory with surface operators

Partition function with trivially-embedded surface operators. The partition

function of the original theory in the gauge field A with complexified coupling parame-

ter τ , can be written as

Z(τ, α, η) = (Imτ)1/2(B1−B0) 1

vol(G)

∑

L

∫
DA e−(I′τ +Iη)(A,τ,α,η), (4.11)

where I′τ (A, τ, α, η) and Iη(A, τ, α, η) are given by (2.9) and (2.10), respectively, and Bk

denotes the dimension of the space of k-forms on M . The prefactor of (Imτ)1/2(B1−B0)

arises because we have implicitly assumed a lattice regularisation of the path integral. In

a lattice regularisation, one would include in the definition of the path integral a factor

of Imτ1/2 for every integration variable, and a factor of Imτ−1/2 for every generator of

a gauge transformation, so as to cancel a cut-off dependent factor. Since the integration

variable A and the gauge parameter ǫ (which generates the gauge transformation) is a

one-form and zero-form on M , their numbers will be given by B1 and B0. Thus, we have

the resulting prefactor. B1 and B0 are of course infinite, but they can be made finite via

the regularisation. We shall elaborate further on this point in a while.

Since as demonstrated earlier in §2.2, the theory with action Î(A,g,w, τ, α, η) in (2.14)

is equivalent to the original theory, we can also write the partition function as

Z(τ, α, η) = (Imτ)1/2(B1−B0) 1

vol(G)

1

vol(Ĝ)

1

vol(G̃)

∑

L, eL

∫
DADgDw e−

bI(A,g,w,τ,α,η), (4.12)

where one recalls that Î(A,g,w, α, η) is explicitly given by

Î(A,g,w, α, η) =
i

2π

∫

M
W∧g− iτ

4π

∫

M
F ′+∧⋆F ′++

iτ̄

4π

∫

M
F ′−∧⋆F ′−+iη

∫

D
F ′. (4.13)

Notice that the w-dependent part of Î(A,g,w, α, η) is independent of τ , and upon eval-

uating the w-integral, one gets a τ -independent delta function as explained earlier. One

can then evaluate the g-integral via this delta function without generating any powers of

Imτ . What is left behind then is just the integration variable A. As such, the prefactor

in (4.12) is the same as that in (4.11).

Alternatively, let us now evaluate (4.13) by gauging A to zero. According to our

computations in §2.2, we can now write the partition function as

Z(τ, α, η) = (Imτ)1/2(B1−B0) 1

vol(Ĝ)

1

vol(G̃)

∑

eL

∫
Dg′Dw e−

bI(g′,w,τ,α,η), (4.14)
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where one recalls that Î(g′,w, τ, α, η) is explicitly given by

Î(g′,w, τ, α, η) = − iτ

4π

∫

M
|g′+|2 +

iτ̄

4π

∫

M
|g′−|2 +

i

4πτ

∫

M
|W+ − 2πηδ+

D |2

− i

4πτ̄

∫

M
|W− − 2πηδ−D |2 − iα

∫

D
(W − 2πηδD). (4.15)

In an eigenfunction expansion of g
′+ and g

′−, there are B+
2 and B−

2 modes for g
′+ and g

′−,

respectively, where B±
2 are the dimensions of self-dual and anti-self-dual two-forms on M .

From the τ -dependence of the g′-dependent terms in (4.15), it is clear that in evaluating

the Gaussian integral over g′ in (4.14), one gets a factor of (−iτ/4π)−1/2 and (iτ̄ /4π)−1/2

for every mode of g
′+ and g

′−. That is, we get a factor of

(−iτ

4π

)−B+

2
/2( iτ̄

4π

)−B−

2
/2

(4.16)

after integrating over g′ in (4.14). Consequently, since Î(0,w, τ, α, η) = (I′τ +

Iη)(w,−1/τ, η,−α), we can write

Z(τ, α, η) = (Imτ)1/2(B1−B0)τ−B+

2
/2τ̄−B−

2
/2 1

vol(G̃)

∑

eL

∫
Dw e−(I′τ +Iη)(w,−1/τ,η,−α) (4.17)

up to a τ -independent multiplicative constant. By noting that Im(−1/τ) = Im(τ)/(τ τ̄ ),

and then by comparing with (4.11) written in terms of the dual variable w, we find that

Z(τ, α, η) = τ− 1

2
(B+

2
−B1+B0)τ̄− 1

2
(B−

2
−B1+B0)Z(−1/τ, η,−α). (4.18)

B2, B1 and B0 are infinite, but can be made finite after the partition function is appro-

priately regularised. In the limit that (α, η) → (0, 0), we have no surface operators,6 that

is, we are back to the ordinary Maxwell theory studied in [13]. In order for our result

in (4.18) to agree with that in [13] when (α, η) → (0, 0), one must set B2 = b2, B1 = b1 and

B0 = b0,
7 where bi is the i-th Betti number of M . Thus, since b0 − b1 + b±2 = (χ ± σ)/2,

where χ and σ are the Euler number and signature of M , respectively, we finally have

Z(−1/τ, η,−α) = τ
1

4
(χ+σ)τ̄

1

4
(χ−σ)Z(τ, α, η). (4.19)

Together with the fact that (I′τ + Iη)(A, τ + 1, α, η − α) = (I′τ + Iη)(A, τ, α, η) for M spin,

that is,

Z(τ + 1, α, η − α) = Z(τ, α, η), (4.20)

we conclude that for any trivially-embedded surface operator, Z(τ, α, η) transforms like a

modular form of SL(2, Z) of weight ((χ + σ)/4, (χ − σ)/4), when M is spin.

6This statement however, is not true for surface operators in the twisted N = 4 SYM theory of [7]; in

the twisted N = 4 SYM theory, the expression of A as given by (2.1), is only defined modulo terms which

are independent of α and less singular than 1/r.
7Note that due to a sign difference in our definition of the theta-term in the Lagrangian, one must switch

τ ↔ −τ̄ when comparing our results with that of [13].
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For M non-spin, we have instead (I′τ + Iη)(A, τ + 2, α, η − 2α) = (I′τ + Iη)(A, τ, α, η),

that is,

Z(τ + 2, α, η − 2α) = Z(τ, α, η). (4.21)

Hence, we conclude that for any trivially-embedded surface operator, Z(τ, α, η) transforms

like a modular form of Γ0(2) of weight ((χ + σ)/4, (χ − σ)/4), when M is non-spin.

Partition function with non-trivially-embedded surface operators. The compu-

tation of the partition function for when the surface operator is non-trivially-embedded,

is almost identical to the one above for when the surface operator is trivially-embedded,

except for a minor difference.

When a surface operator is non-trivially-embedded, according to our discussion in §2.3,
one must add to Î(g,w, τ, α, η) that appears in the exponent in (4.14), the c-number term

−2πiηZ. Being a c-number term that is independent of the quantum fields, it can be

factored out of the path integral. One then proceeds as before to evaluate the Gaussian

integral over the g′ fields, which again yields a factor of (−iτ/4π)−B+

2
/2 and (iτ̄/4π)−B−

2
/2.

Since one must replace B0, B1 and B2 in (4.14) by b0, b1 and b2 under the appropriate

regularisation, and since the relation Î(0,w, τ, α, η) = (I′τ + Iη)(w,−1/τ, η,−α) remains

unchanged, we will again have, after replacing w with the dual variable A, the result

Z(−1/τ, η,−α) = τ
1

4
(χ+σ)τ̄

1

4
(χ−σ)Z(τ, α, η), (4.22)

up to a τ -independent c-number.

Next, note also from our discussion in §2.3 that for M spin, the original action I′τ+Iη(A)

is invariant mod 2πiZ under T : τ → τ + 1, up to a c-number term απiZ. In other words,

we have, for M spin,

Z(τ + 1, α, η − α) = Z(τ, α, η) (4.23)

up to a τ -independent c-number.

In the case when M is non-spin, the original action I′τ + Iη(A) is invariant mod 2πiZ

under T : τ → τ + 2, up to a c-number term 2απiZ. In other words, we have, for

M non-spin,

Z(τ + 2, α, η − α) = Z(τ, α, η) (4.24)

up to a τ -independent c-number also.

Recall from our discussion at the end of §2.3 regarding the theory over parameter space,

that the partition function continues to be a complex-valued function of α and η even when

the surface operators are non-trivially-embedded. Hence, altogether, we can conclude that

for M spin (or non-spin), the partition function of the pure U(1) gauge theory with a

non-trivially embedded surface operator - like the one with a trivially-embedded surface

operator - transforms like a modular form of SL(2, Z) (or Γ0(2)) of weight ((χ + σ)/4, (χ−
σ)/4). As required, our results reduce to that of the ordinary Maxwell theory in the limit

(α, η) → (0, 0), where there are no surface operators.
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Discussion on the modular anomaly. Whenever M is non-flat, χ and σ do not vanish,

and the partition function always transforms as a modular form rather than a modular-

invariant function. One can interpret this observation as follows. When the pure U(1)

gauge theory is coupled to non-dynamical gravity (that is, to a fixed curved space), S-

duality can only be maintained if one makes certain minimal c-number couplings that

involve the background gravitational field. In light of (4.19) (or (4.22)), we find that the

couplings involved must take the form

−
∫

M

(
{B(τ) + B(τ̄)} trR ∧ R̃ + {C(τ) + C(τ̄)} trR ∧ R

)
, (4.25)

where trR ∧ R̃ and trR ∧ R are the densities whose integrals give the Euler characteristic

χ and signature σ of M , respectively, and

B(τ) = C(τ) =
1

8
ln

(
τ3 − 1

τ

)
, B(τ̄) = C

(
− 1

τ̄

)
=

1

8
ln

(
τ̄3 − 1

τ̄

)
. (4.26)

Note however, that even though one can - by adding the coupling term of (4.25) to

the original action - maintain S-duality on a curved four-manifold M , that is, we now have

Z(−1/τ, η,−α) = Z(τ, α, η), one can no longer maintain - not even up to a τ -independent

c-number - the relation Z(τ + 1, α, η − α) = Z(τ, α, η) or Z(τ + 2, α, η − α) = Z(τ, α, η),

when M is spin or non-spin, respectively. In other words, the theory can never be fully

modular-invariant in a curved four-manifold background.

4.3 Transformation of correlation functions of non-singular, gauge-invariant

local operators

For positive integers a and b, let us now consider a correlation function of an arbitrary

monomial O(F ′
+, F ′

−) = (F ′
+)a(F ′

−)b of the non-singular , gauge-invariant local operators

F ′
± = F±−2παδ±D, in the background presence of an arbitrarily-embedded surface operator

with parameters (α, η), at complexified gauge coupling τ :

〈O(F ′
+, F ′

−)〉
τ,α,η

∼ (Imτ)1/2(b1−b0) 1

vol(G)

∑

L

∫
DA O(F ′

+, F ′
−) · e−(I′τ +Iη)(A,τ,α,η). (4.27)

We shall now evaluate how this correlation function transforms under S-duality, just like

what was done above for the partition function.

To this end, first note that the correlation function (4.27) can also be computed as the

following correlation function of the (equivalent) extended theory

(Imτ)1/2(b1−b0) 1

vol(G)

1

vol(Ĝ)

1

vol(G̃)

∑

L, eL

∫
DADgDw O(F ′

+,F ′
−) · e−bI(A,g,w,τ,α,η), (4.28)

where one recalls that F ′
± = F ′

± − g±.

Next, note that from (2.21), we can write F ′
+ = F+ − g′

+ − (1/τ )(W+ − 2πηδ+
D) and

F ′
− = F− − g′

− − (1/τ̄ )(W− − 2πηδ−D). By evaluating (4.28) in the gauge A = 0, and

rewriting the action in terms of the field g′ (see (2.22)), we have

(Imτ)1/2(b1−b0) 1

vol(Ĝ)

1

vol(G̃)

∑

eL

∫
Dg′Dw O(F̂ ′

+, F̂ ′
−) · e−bI(g′,w,τ,α,η) (4.29)
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up to a τ -independent c-number, where F̂ ′
+ = −g′

+ − (1/τ )(W+ − 2πηδ+
D) and F̂ ′

− =

−g′
− − (1/τ̄ )(W− − 2πηδ−D).

Finally, by integrating out the fields g′
± from (4.29), and by noting that Im(−1/τ) =

Im(τ)/(τ τ̄ ) and Î(0,w, τ, α, η) = (I′τ + Iη)(w,−1/τ, η,−α), we get, up to a τ -independent

multiplicative constant

(Im(−1/τ))1/2(b1−b0) τ−(a+ χ+σ
4

)τ̄−(b+ χ−σ
4

) × (4.30)

× 1

vol(G̃)

∑

eL

∫
Dw O(W′

+,W′
−) · e−(I′τ +Iη)(w,−1/τ,η,−α),

where W′
± = W± − 2πηδ±D.8 By comparing (4.30) with (4.27), we see that the correlation

function 〈O(F ′
+, F ′

−)〉
τ,α,η

transforms under S-duality as

〈O(F ′
+, F ′

−)〉
−1/τ,η,−α

= τ (a+ χ+σ
4

)τ̄ (b+ χ−σ
4

)〈O(F ′
+, F ′

−)〉
τ,α,η

(4.31)

up to a τ -independent c-number.

Since O(F ′
+, F ′

−) is independent of τ , when M is spin, we further have

〈O(F ′
+, F ′

−)〉τ+1,α,η−α = 〈O(F ′
+, F ′

−)〉τ,α,η, (4.32)

and when M is non-spin, we further have

〈O(F ′
+, F ′

−)〉τ+2,α,η−2α = 〈O(F ′
+, F ′

−)〉τ,α,η, (4.33)

all up to a τ -independent c-number. In other words, the correlation function

〈O(F ′
+, F ′

−)〉
τ,α,η

transforms like a modular form of SL(2, Z) (or Γ0(2)) with weight

(a+ χ+σ
4 , b+ χ−σ

4 ), when M is spin (or non-spin). Compare this with the weight (χ+σ
4 , χ−σ

4 )

of the partition function; hence, in general, we see that the partition function and corre-

lation functions of the (non-singular) gauge-invariant local operators F ′
± all transform like

modular forms but with different modular weights.
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